
Si8469DB Vishay Siliconix

P-Channel 8 V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	R_{DS(on)} (Ω)	I _D (A) ^{a, e}	Q _g (TYP.)		
-8	0.064 at V _{GS} = -4.5 V	-4.6			
	0.076 at V _{GS} = -2.5 V	-4.2	6.9 nC		
	0.115 at V _{GS} = -1.5 V	-3.4	0.9110		
	0.180 at V _{GS} = -1.2 V	-1.2			

MICRO FOOT® 1 x 1

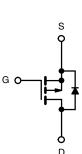
D **Bump Side View**

Backside View

Marking Code: xxxx = 8469

xxx = Date / lot traceability code

Ordering Information:


Si8469DB-T2-E1 (lead (Pb)-free and halogen-free)

FEATURES

- TrenchFET[®] power MOSFET
- Ultra-Small 1 mm x 1 mm maximum outline
- Ultra-thin 0.548 mm maximum height
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- · Load switches, battery switches and charger switches in portable device applications
- Load switch for 1.2 V power line

RoHS

COMPLIANT

HALOGEN FREE

P-Channel MOSFET

PARAMETER		SYMBOL	LIMIT	UNIT
Drain-Source Voltage		V _{DS}	-8	N
Gate-Source Voltage		V _{GS}	± 5	- V
	T _A = 25 °C		-4.6 ^a	_
Continuous Drain Current (T. 150 °C)	T _A = 70 °C		-3.7 ^a	
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	I _D	-3.6 ^b	
	T _A = 70 °C		-2.8 ^b	A
Pulsed Drain Current		I _{DM}	-15	
Continuous Source-Drain Diode Current	T _A = 25 °C		-1.4 ^a	
	T _A = 25 °C	I _S	-0.6 ^b	
	T _A = 25 °C		1.8 ^a	
Marian and David Disain ation	T _A = 70 °C	D D	1.1 ^a	w
Maximum Power Dissipation	T _A = 25 °C	P _D	0.78 ^b	
	T _A = 70 °C		0.5 ^b	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	
Paakaga Deflaw Conditions (VPR		260	°C
Package Reflow Conditions ^c	IR/Convection		260	

THEDMAL DEGISTANCE DATINGS

PARAMETER	SYMBOL	TYPICAL	MAXIMUM	UNIT			
Maximum Junction-to-Ambient ^{f, g}	t = 10 s	Р	55	70	°C/W		
Maximum Junction-to-Ambient h, i	t = 10 s	R _{thJA}	125	160	0/10		

Notes

a. Surface mounted on 1" x 1" FR4 board with full copper, t = 10 s.

b. Surface mounted on 1" x 1" FR4 board with minimum copper, t = 10 s.

c. Refer to IPC/JEDEC® (J-STD-020), no manual or hand soldering.

d. In this document, any reference to case represents the body of the MICRO FOOT device and foot is the bump.

Based on $T_A = 25$ °C. e.

Surface mounted on 1" x 1" FR4 board with full copper. f.

Maximum under steady state conditions is 100 °C/W. g.

Surface mounted on 1" x 1" FR4 board with minimum copper. h.

Maximum under steady state conditions is 190 °C/W. i.

S15-1510-Rev. B, 29-Jun-15

Document Number: 67091

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Si8469DB

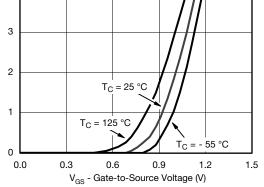
Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Static							
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V, I_D = -250 \mu A$	-8	-	-	V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_J$	- Ι _D = -250 μΑ	-	-6.4	-	mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	i _D = -230 μA	-	2.4	-	IIIV/ C	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-0.35	-	-0.8	V	
Gate-Source Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 5 V	-	-	± 100	nA	
Zara Cata Valtaga Drain Current		$V_{DS} = -8 V, V_{GS} = 0 V$		-	-1		
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = -8 V, V_{GS} = 0 V, T_J = 70 °C$		-10	- μΑ		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, \text{ V}_{GS} = -4.5 \text{ V}$	-10	-	-	Α	
		V _{GS} = -4.5 V, I _D = -1.5 A	-	0.052	0.064		
Drain-Source On-State Resistance ^a		V _{GS} = -2.5 V, I _D = -1 A	-	0.062	0.076	Ω	
	R _{DS(on)}	V _{GS} = -1.5 V, I _D = -0.3 A	-	0.085	0.115		
		V _{GS} = -1.2 V, I _D = -0.3 A	-	0.110	0.180		
Forward Transconductance ^a	g fs	V _{DS} = -4 V, I _D = -1.5 A	-	12	-	S	
Dynamic ^b		·		•		•	
Input Capacitance	C _{iss}		-	900	-	pF	
Output Capacitance	Coss	V _{DS} = -4 V, V _{GS} = 0 V, f = 1 MHz	-	315	-		
Reverse Transfer Capacitance	C _{rss}		-	260	-		
Total Gate Charge	Qg		-	11	17	nC	
Gate-Source Charge	Q _{gs}	$V_{DS} = -4 V$, $V_{GS} = -4.5 V$, $I_{D} = -1.5 A$	-	0.85	-		
Gate-Drain Charge	Q _{qd}		-	2.5	-		
Gate Resistance	R _g	V _{GS} = -0.1 V, f = 1 MHz	-	6	-	Ω	
Turn-On Delay Time	t _{d(on)}		-	15	30		
Rise Time	t _r	$V_{DD} = -4 V, R_{L} = 2.7 \Omega$	-	22	45	ns	
Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D}\cong\text{-1.5 A},\text{V}_\text{GEN}=\text{-4.5 V},\text{R}_\text{g}=1~\Omega$	-	35	70		
Fall Time	t _f		-	17	35		
Drain-Source Body Diode Characteris	tics	·				• 	
Continuous Source-Drain Diode Current	ا _S	T _A = 25 °C	-	-	-1.5	A	
Pulse Diode Forward Current	I _{SM}		-	-	-15		
Body Diode Voltage	V _{SD}	I _S = -1.5 A, V _{GS} = 0 V	-	-0.9	-1.3	V	
Body Diode Reverse Recovery Time	t _{rr}		-	25	50	ns	
Body Diode Reverse Recovery Charge	Q _{rr}		-	10	20	nC	
Reverse Recovery Fall Time t _a		I _F = -1.5 A, dl/dt = 100 A/μs, T _J = 25 °C	-	10	-	ns	
Reverse Recovery Rise Time	t _b			15	-		

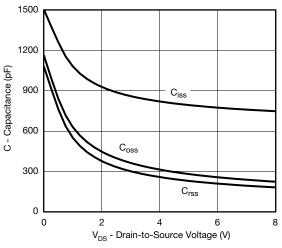
Notes

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

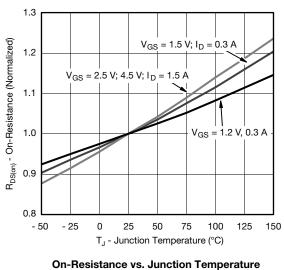
b. Guaranteed by design, not subject to production testing.

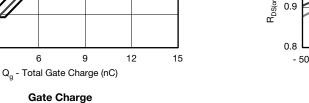

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2


I_D - Drain Current (A)

5


4



Transfer Characteristics

S15-1510-Rev. B, 29-Jun-15

3

I_D = 1.5 A

 $V_{DS} = 2 V$

6

5

4

3

2

1

0

0

V_{GS} - Gate-to-Source Voltage (V)

3

Document Number: 67091

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

V_{GS} = 1.5 V

 $V_{GS} = 1 V$

 $V_{GS} = 0.5 V$

2.5

V_{GS} = 1.5 V

3.0

2.0

= 5 V thru 2 V

 V_{GS}

'ISHAY

15

12

9

6

3

0

0.20

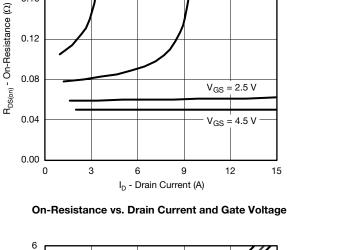
0.16

0.0

0.5

1.0

V_{GS} = 1.2 V


1.5

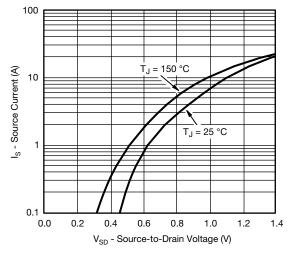
V_{DS} - Drain-to-Source Voltage (V) **Output Characteristics**

I_D - Drain Current (A)

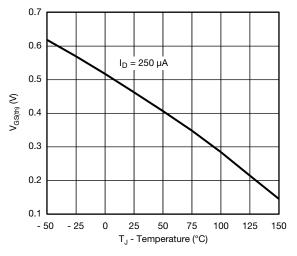
Vishay Siliconix

Si8469DB

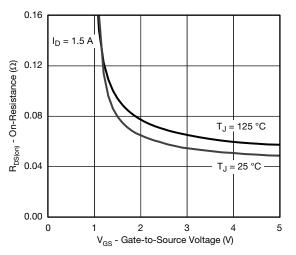
 $V_{DS} = 4 V$

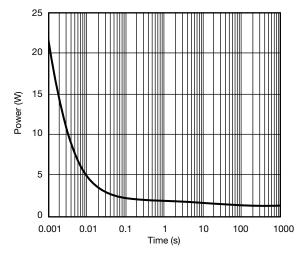

V_{DS} = 6.4 V

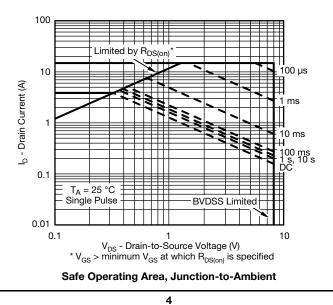
Si8469DB



Vishay Siliconix

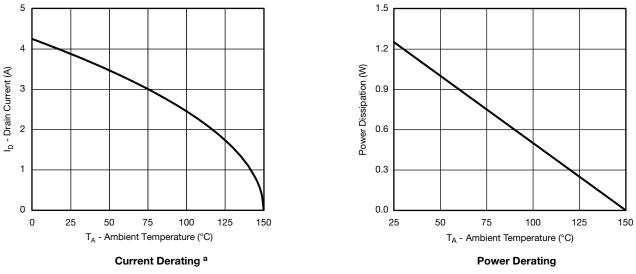

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage



On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient


S15-1510-Rev. B, 29-Jun-15

For technical questions, contact: pmostechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

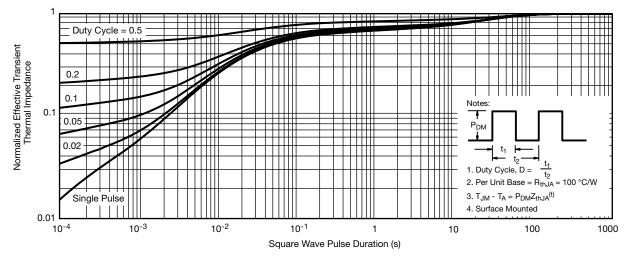
Vishay Siliconix

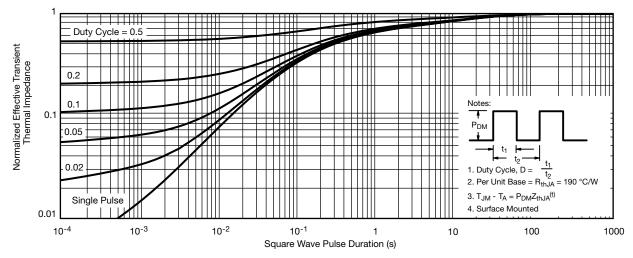
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Note

• When mounted on 1" x 1" FR4 with full copper.

Note


a. The power dissipation P_D is based on T_J (max.) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

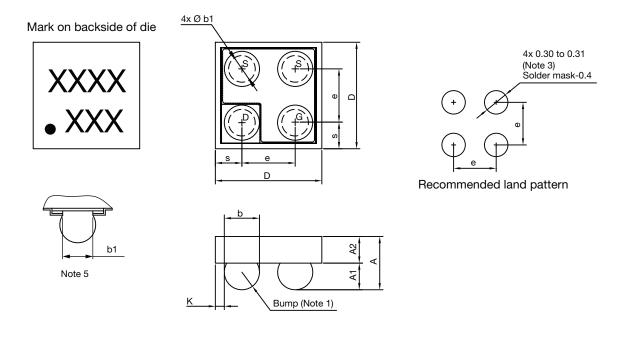

Si8469DB

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient (1" x 1" FR4 Board with Full Copper)

Normalized Thermal Transient Impedance, Junction-to-Ambient (1" x 1" FR4 Board with Minimum Copper)


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67091.

S15-1510-Rev. B, 29-Jun-15	6	Document Number: 67091
For tec	chnical questions, contact: pmostechsupport@vishay.co	<u>m</u>
	IANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBE	
ARE SUBJECT TO S	SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.c	<u>om/doc?91000</u>

Vishay Siliconix

MICRO FOOT[®]: 4-Bumps (1 mm x 1 mm, 0.5 mm Pitch, 0.286 mm Bump Height)

Notes

- 1. Bumps are 95.5/3.8/0.7 Sn/Ag/Cu.
- 2. Backside surface is coated with a Ti/Ni/Ag layer.
- 3. Non-solder mask defined copper landing pad.
- 4. Laser mark on the backside surface of die.
- 5. "b1" is the diameter of the solderable substrate surface, defined by an opening in the solder resist layer solder mask defined.
- 6. is the location of pin 1

DIM.	MILLIMETERS			INCHES			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.458	0.504	0.550	0.0180	0.0198	0.0217	
A1	0.214	0.250	0.286	0.0084	0.0098	0.0113	
A2	0.244	0.254	0.264	0.0096	0.0100	0.0104	
b	0.297	0.330	0.363	0.0117	0.0130	0.0143	
b1		0.250			0.0098		
е		0.500			0.0197		
S	0.210	0.230	0.250	0.0083	0.0091	0.0096	
D	0.920	0.960	1.000	0.0362	0.0378	0.0394	
К	0.029	0.065	0.102	0.0011	0.0026	0.0040	

Note

• Use millimeters as the primary measurement.

ECN: T15-0176-Rev. A, 27-Apr-15 DWG: 6039

Revision: 27-Apr-15

1

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay: SI8469DB-T2-E1